National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Hardware and software of a smart home appliance
Blaha, Vít ; Kaczmarczyk, Václav (referee) ; Fiedler, Petr (advisor)
Nowadays, the interest in smart appliances, which enable consumption reduction or consumption shifting approach, grows up. Such appliances can react to actual situation in the distributional network. From the energy distributor point of view, the activity of these appliances brings improvement of stability in the distribution network, while for the end customer there is possibility of the saving money. This thesis describes a transformation of standard fridge to smart fridge controlled by microcomputer Raspberry Pi. The smart fridge can communicate with supervisor system and according to its instructions change its behavior (temperature set point). The appliance can be manually controlled by a group of buttons, while its state can be visualized on the alphanumeric display. Last but not least way to control the appliance is through a web interface. The thesis also describes design of printed circuit board (PCB), which is designed for connection of all necessary sensors and actuators to Raspberry Pi. Software equipment is designed in the C++ program language.
Hardware and software of a smart home appliance
Blaha, Vít ; Kaczmarczyk, Václav (referee) ; Fiedler, Petr (advisor)
Nowadays, the interest in smart appliances, which enable consumption reduction or consumption shifting approach, grows up. Such appliances can react to actual situation in the distributional network. From the energy distributor point of view, the activity of these appliances brings improvement of stability in the distribution network, while for the end customer there is possibility of the saving money. This thesis describes a transformation of standard fridge to smart fridge controlled by microcomputer Raspberry Pi. The smart fridge can communicate with supervisor system and according to its instructions change its behavior (temperature set point). The appliance can be manually controlled by a group of buttons, while its state can be visualized on the alphanumeric display. Last but not least way to control the appliance is through a web interface. The thesis also describes design of printed circuit board (PCB), which is designed for connection of all necessary sensors and actuators to Raspberry Pi. Software equipment is designed in the C++ program language.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.